

California Building Energy Benchmarking: Current and Future Directions

Mary Ann Piette and Nance Matson Lawrence Berkeley National Laboratory

Research Sponsor: California Energy Commission Commercial Sector Benchmarking Workshop Executive Order S 20-04

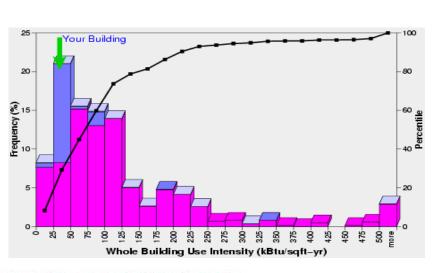
Sacramento, California April 7, 2005

Presentation Overview

- Presentation Overview
- Benchmarking Basics
- California Benchmarking Tool: Cal-Arch
- California and National Benchmarking
- Future Tools using New CEUS
- Summary

Benchmarking Basics: Why Benchmark?

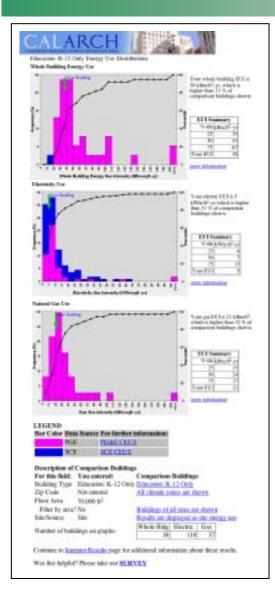
- Determine how well a building is performing
- Compare energy consumption to similar buildings
- Set targets for improved performance
- Facilitate assessment of property value
- Gain recognition for exemplary achievement
- Identify actions for energy savings



California Benchmarking Tool: Cal-Arch

- Simple online tool for benchmarking energy use in California commercial buildings
 - □ EUI = energy use use intensity (energy/square foot-year)
- EUIs represent actual energy use
 - □ No adjustments or correction factors, site or source energy
- Provides energy use for similar buildings, as determined by type, size, and climate zone
- http://poet.lbl.gov/cal-arch

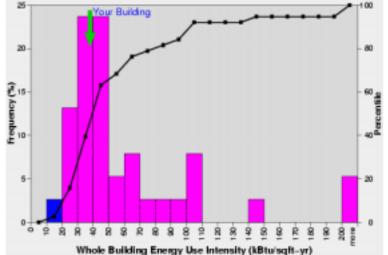
Cal-Arch Data Sources: CEUS


California Commercial End Use Survey

- Conducted by utilities to support forecasting & program design
- Currently using 1995 PG&E, 1992 SCE, 1995 SCE surveys (~2000 sites total)
- Extremely detailed
 - Mechanical, structural, end uses characteristics
- Limited use of survey: Zip code/climate zone, type, size, energy use (fuels by end-use, billing data)
- New CEUS 2800 audits with energy data and DOE-2 models, and energy efficiency measures
- Additional LBNL research to collect schools data with CHPS, utilities, and CEC

۲

Cal-Arch Results



Education: K-12 Only Energy Use Distributions

Whole Building Energy Use

Your whole building EUI is 38 kBtu/ft²-yr, which is higher than 31 % of comparison buildings shown.

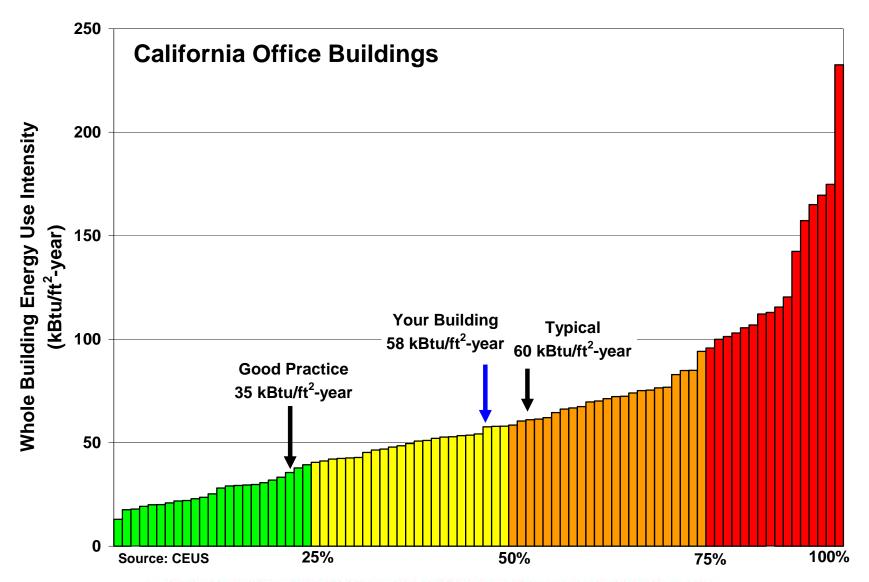
EUI Summary		
%-tile	kBtu/ft ² -yr	
25	35	
50	43	
75	67	
Your EUI	38	

more information

- Shows your building's energy use compared to similar buildings in CEUS
 - □ Electric, Gas and Whole Building EUI values
 - Percentage of buildings with lower EUIs

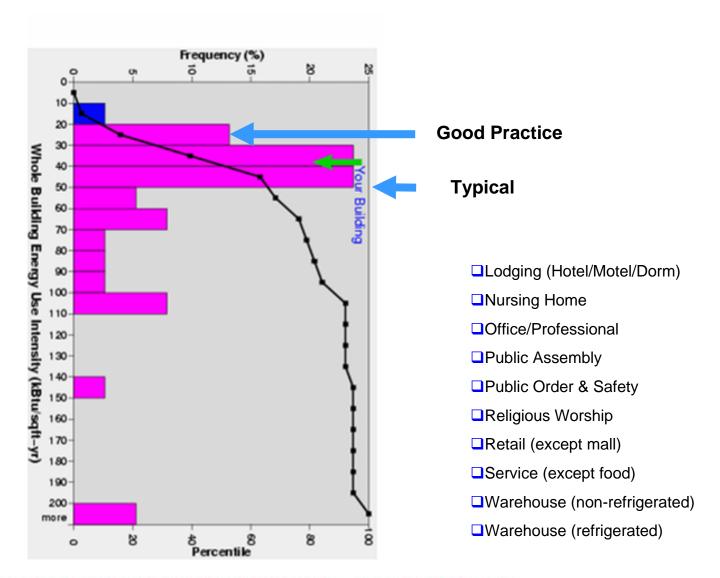
California and National Benchmarking: Consistent Results

- California buildings tend to have high Energy Star Scores
- CEUS analysis used to improve Energy Star methodology

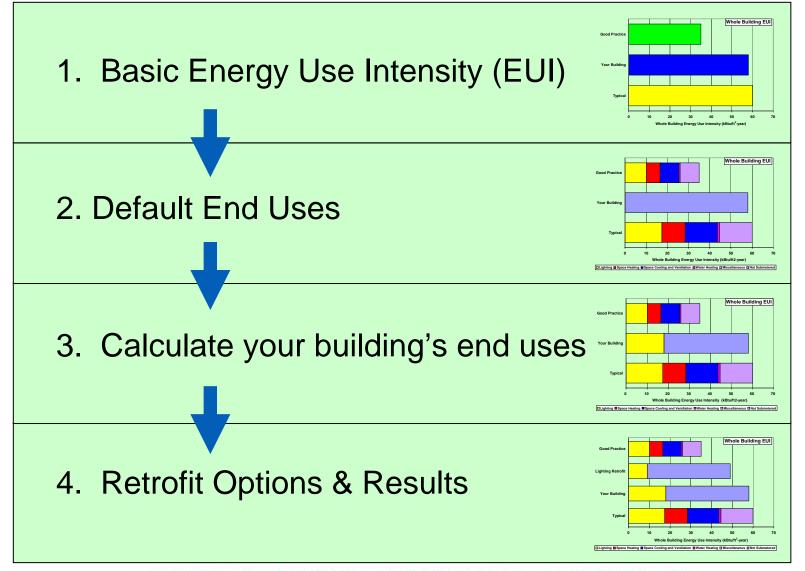


3 CEUS Office Buildings North Coast Climate zone	Building A	Building B	Building C	
Floor Area (ft ²)	30,000	500,000	300,000	
Whole Building (EUI)	29	52	143	
Energy Star Rating	98	82	23	
Percent of Cal-Arch office buildings with greater EUI				
North Coast Climate Zone	79%	54%	10%	

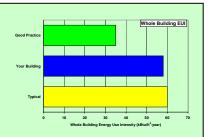
Future CEUS-Based Tools Numerous Ways to Display Data



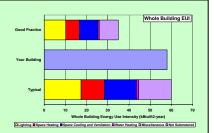
Compare to Typical and Good Practice


- Agricultural
- Education
- □Education K-12 only
- □ Enclosed Shopping/Mall
- ■Food Sales
- ☐ Food Services (Restaurant)
- ☐ Health Care (Inpatient)
- ☐ Health Care (Outpatient)
- ■Industrial Processing

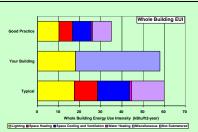
Action-Oriented Benchmarking: Benchmarking to Retrofit Options



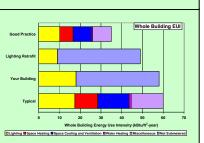
Simple to Detailed Information


1. Basic Energy Use Intensity (EUI)

- Building Type
- Climate Zone
- Floor Area
- Energy Use


2. Default End Uses

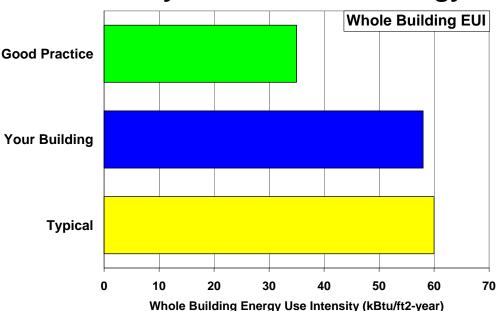
Specify your building's end-uses

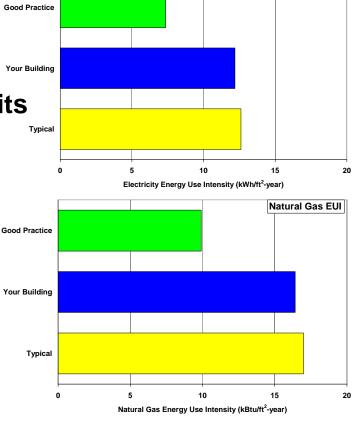

3. Calculate your building's end uses

Detailed end-use characteristics

4. Retrofit Options & Results

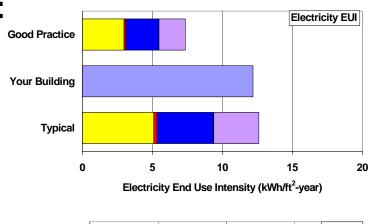
Select retrofit options by end use

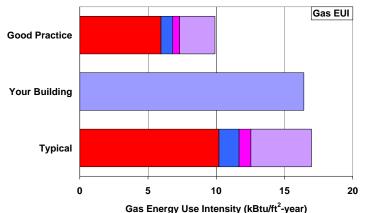



1. Energy Use Intensities

Electricity EUI

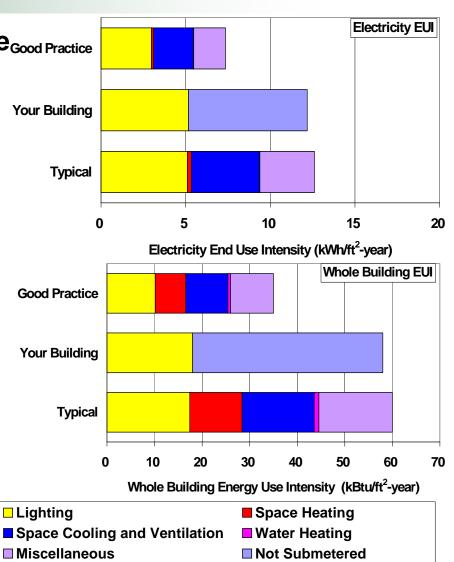
- 1. Compare your building's energy use intensities (EUIs) to typical and good practice cases:
 - □ By type and climate
 - By fuel (electricity and natural gas) or whole building
 - □ kBtu/ft²-yr site or source energy units




2. Default End-Uses

2. Review default end-use distributions for typical and good practice (UK/EU approach):

- By fuel (electricity and natural gas)
- Specify your building's end uses:
 - Lighting
 - Space Heating and Cooling
 - Heating
 - Cooling
 - Fans and Ventilation
 - Water Heating
 - Miscellaneous
 - Office Equipment
 - Refrigeration
 - Cooking
 - Outdoor Lighting
 - Other Misc.
 - ? Other end uses?


End-Use Breakdowns from CEC 1998 Energy Baseline

3. Calculate End-Use Energy – Lighting

3. Use simplified methods to estimate_{Good Practice} end-use consumption:

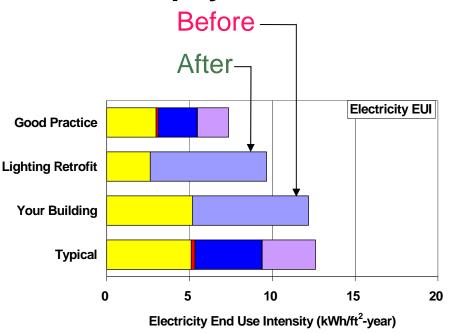
Lighting	Base Case
Lighting power, W (watts/ft²)	1.5
Lighting control factor, C _o (no occupancy sensors)	1
Diversity Factor, D _f (actual % of lighting power used)	0.9
Main shift occupied hours, H _o (hours/week)	50
Percent of lighting load during off hours, L _u	20%
Estimated Lighting EUI (kWh/ft²-year)	5.2
Estimated Lighting EUI (kBtu/ft²-year)	18

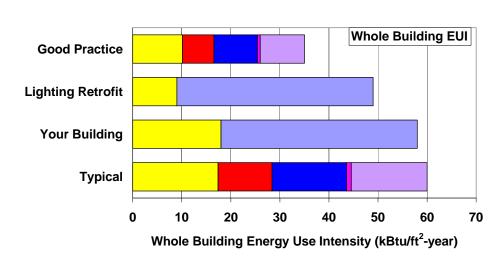
Lighting EUI (kBtu/ft²-year) = (52 weeks/year) x (H_0 x C_0 + (1-Ho)x L_0) x D_f x W) x (kW/1000W) x (3.412 kBtu/kW)

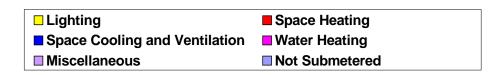
4. Select Retrofits – Indoor Lighting

Pos	ssible Lighting Retrofits in CEUS (-):
	☐ Lamp Replacement (T-12 to T-8) (consider T24 upgrade)
	☐ Hi-efficiency Ballast
	☐ Incandescent to CFL conversion
	☐ Occupancy Sensors (consider T24 upgrade)
	☐ Lighting Controls

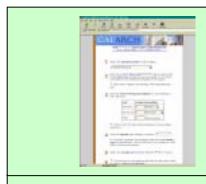
Lighting Retrofit:		
lamps, occupancy sensors, rezoning	Base Case	Retrofit
Lighting power, W (watts/ft²)	1.5	1.2
Lighting control factor, C _o	1	0.7
Diversity Factor, D _f (actual % of lighting power used)	0.9	0.9
Main shift occupied hours, H _o (hours/week)	50	50
Percent of lighting load during off hours, L _u	20%	10%
Estimated Lighting EUI (kWh/ft²-year)	5.2	2.6
Estimated Lighting EUI (kBtu/ft²-year)	18	9


□ Rezoning




4. Evaluate Retrofits

- □ Proposed retrofit reduces EUI by ~3 kWh/ft²-year
 (9 kBtu/ft²-year)
- □ Add payback estimate.



Basic Benchmarking: 3 User Interface Options

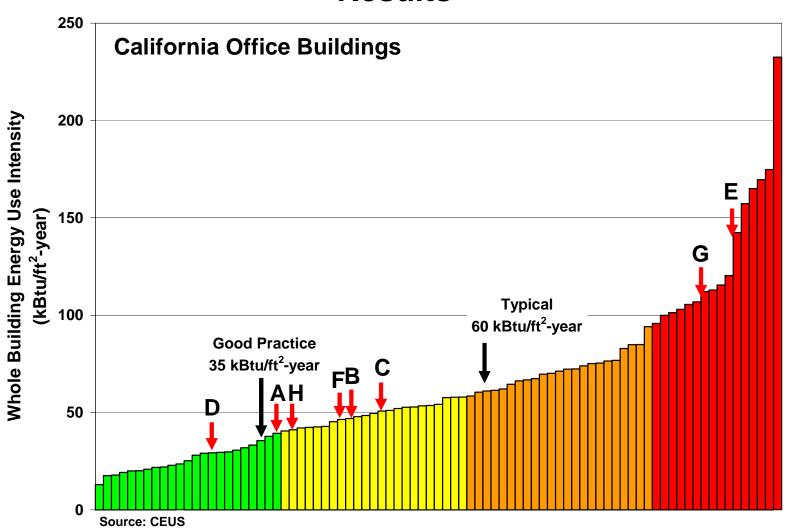
One building at a time

Batch Mode – submit spreadsheet

Integrated with web energy services -Interoperate with Energy Information Systems e.g. Interact

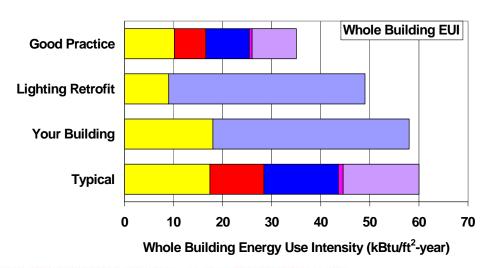
Batch Mode Option

Spreadsheet Input Screen


California Benchmarking Tool - Building Inputs					
Facility	Building Type	Climate Zone	Floor Area (ft2)	Annual Electricity Consumption (kWh)	Annual Natural Gas Consumption (Therms)
Α	Office Building	North Coastal	100,000	2,808,000	1,092,000
В	Office Building	South Coastal	30,000	1,015,200	394,800
С	Office Building	Inland	250,000	9,180,000	3,570,000
D	Office Building	North Coastal	450,000	9,720,000	3,780,000
Е	Office Building	Mountain / Desert	35,000	3,528,000	1,372,000
F	Office Building	Inland	150,000	5,184,000	2,016,000
G	Office Building	Mountain / Desert	1,000,000	78,480,000	30,520,000
Н	Office Building	South Coastal	750,000	22,680,000	8,820,000

Batch Mode Option

Results



Summary

- California & national tools good starting point for benchmarking; development has been coordinated and mutually beneficial
- New data & models provide opportunity to improve tools
- Web-based, batch mode, and integration with Energy Information Systems
- Future tools Action Oriented, Title 24 Baseline

Further Information

- Contact:
 - MAPiette@lbl.gov (510) 486-6286
 - □ NEMatson@lbl.gov (510) 486-7328
- Web Site:
 - http://poet.lbl.gov/cal-arch
 - Additional benchmarking tools:
 - http://poet.lbl.gov/cal-arch/links/
- High Performance Commercial Building Systems (CEC PIER funded)
 - □ http://buildings.lbl.gov/hpcbs
- Cal-Arch Papers:
 - http://buildings.lbl.gov/hpcbs/Pubs.html